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Model-free recursive LQ controller design (learning LQ control)
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SUMMARY

A new data-based iterative self-optimizing approach to practical design (learning/adaptive process) of the
infinite-horizon LQ regulator is proposed. Optimality is given by a certain orthogonality condition of
response signals, and the global convergence of feedback gain is proved for MIMO systems by an
expansion of the Riccati equation. The design is applied to stabilizing control and steady state error-less
control of physical systems. Copyright # 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Although the use of a model had been regarded as essential for designing the LQ regulator, we
recently found some propositions concerning model-free (data-based) designs of the LQ
regulator [1–7] that give the regulator without knowing the system matrices. The model-free
minimum-variance control [8, 9] seems applicable to the LQ problem as well. We also found a
prototype of model-free design in the 1960s in relation to the early modern control theory
[10, 11]. However there exist various difficulties to apply them to physical systems, and
developing a useful method is desirable.

The purpose of this paper is to introduce a new data-based approach to the infinite-horizon
LQ controller design. That is aimed at developing practical algorithm. Kawamura primitively
noticed the key relation in the 1980s when he considered the dual relation of the well-known
orthogonality related to the Kalman filter. That led to some orthogonality relations between the
responses of the LQ regulator [12]. Those days were bright age of model-reference adaptive
control and model-based self-tuning regulator [13, 14], and the iterative learning control by
Arimoto et al. was also attractive [15, 16]. Those results were not applicable at all because they
were essentially different from the model-free LQ design. Since then, Kawamura and some
students have engaged in developing a related method, and they have reported many interim
results mainly in Japanese. Although it gave an alternative approach to the previous
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identification-based LQ design [1, 2], (the latter is written in English), it could not alouse
sufficient interest of researchers.

The original model-free LQ design by Kawamura is characterized by calculation of the inner
product as sensitivity. The main drawback is its supersensitivity to a constant value, e.g. the
static friction of physical systems, because of the long-term calculation of the inner product.
Other different model-free LQ design methods have similar defect. We cannot obtain practicable
model-free LQ design without the overcoming. The current approach has been developed as a
countermeasure. It involves two new basic ideas:

* Introduction of a recursive (one-stage) data-based calculation of sensitivity of unknown
systems.

* Introduction of statistical data processing and its convergence analysis.

We refer to this new approach as the ‘recursive algorithm’.

2. RECURSIVE RELATION

2.1. Inner product of responses and sensitivity

First, we show some definitions. We study the linear time-invariant system

xðtþ 1Þ ¼ AxðtÞ þ BuðtÞ ð1Þ

defined on t ¼ 0; 1; 2; . . . as the state xðtÞ 2 Rn and the input uðtÞ 2 Rm: We assume that the state
is directly measurable. Let

zðtÞ ¼
CxðtÞ

DuðtÞ

 !
ð2Þ

be the generalized controlled output for t4L� 1 where zðtÞ 2 Rl ; and let

zðLÞ ¼ C1xðLÞ: ð3Þ

Let z denote the whole signal fzð0Þ; zð1Þ; . . . ; zðLÞg: Define an inner product [12] of two signals
z1 and z2 by

hz1; z2iL ¼
XL�1

t¼0

z1ðtÞ
Tz2ðtÞ þ z1ðLÞ

Tz2ðLÞ

¼
XL�1

t¼0

fx1ðtÞ
TCTCx2ðtÞ þ u1ðtÞ

TDTDu2ðtÞg

þ x1ðLÞ
TCT

1C1x2ðLÞ: ð4Þ

Note that the standard LQ performance index is given by VL ¼ hz; ziL .
Consider the feedback input uðtÞ ¼ GxðtÞ þ vðtÞ where G 2 Rm�n and vðtÞ 2 Rm is a pulse at

t ¼ 0: Since hz1; z2iL is bi-linear with regard to the initial signals xið0Þ ¼ ðxið0Þ
Tvið0Þ

TÞT; certain
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matrices G; Gaa; Gab ¼ ðGbaÞT and Gbb satisfy

hz1; z2iL ¼ x1ð0Þ
TGx2ð0Þ

¼ x1ð0Þ
TGaax2ð0Þ þ x1ð0Þ

TGabv2ð0Þ

þ v1ð0Þ
TGbax2ð0Þ þ v1ð0Þ

TGbbv2ð0Þ: ð5Þ

This relation means that the matrices Gaa; Gab and Gbb indicate the zero-, first- and second-
order sensitivities of the inner product with regard to the additional pulse vð0Þ: We call
G the fundamental sensitivity matrix. It plays the central role of this paper. Note that the
sensitivity is connected with the inner product though it is usually mentioned in relation to
the output.

The problem is the infinite-horizon LQ control problem in which we minimize the total cost
V1: We use the following standard assumption:

Assumption 1

ðA;BÞ is stabilizable, ðC;AÞ is detectable and DTD > 0:

Under Assumption 1, it is well known that a time-invariant state feedback uðtÞ ¼ GxðtÞ
comprises the stable infinite-horizon LQ optimal control [13]. Therefore we regard that the
problem is optimizing the time-invariant gain G 2 Rm�n without information about A and B:We
study the problem in terms of the inner product.

2.2. Orthogonality condition

The fundamental problem of model-free design is how to judge the optimality of an unknown
system. First, we briefly explain the orthogonality of the LQ regulator as the key of this
approach. Let G 2 Rm�n; and let uðtÞ ¼ GxðtÞ þ vðtÞ: Define two closed-loop response signals: za

is an initial state response such that xað0Þ 2 Rn and vaðtÞ � 0; zb is a pulse response such that
xbð0Þ ¼ 0; vbð0Þ 2 Rm and vbðtÞ � 0 for t51:

Under Assumption 1, it was shown [12, 2] (the latter is an English paper) that G is the infinite-
horizon LQ gain if and only if

lim
L!1

hza; zbiL ¼ 0 ð6Þ

for any xað0Þ and vbð0Þ:

Remark 1

Since we usually pay attention to the response CxðtÞ; orthogonality does not hold for the LQ
problem, and it was not mentioned in related literature. The vector output zðtÞ contains not only
CxðtÞ but also the input factor DuðtÞ as in (2). The inner product of a signal with itself agrees
with the standard LQ performance index. This relation is crucial for the orthogonality.
Although the pulse is given at only t ¼ 0; the time-invariance of the system gives the optimality
at every t: The following is a brief explanation of (6): the optimal response (initial state response)
is orthogonal to a perturbation (pulse response). This is the dual relation of the orthogonality
between the optimal estimation error and the innovation [17]. The orthogonality led to the
original algorithm [1, 2] (English).
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Long-term responses ðL ! 1Þ are necessary to literally check this orthogonality, and
considerable signal processing is unavoidable. As the result, we have not developed a useful
model-free LQ design method. In order to solve it, we introduce the recursive algorithm with a
finite L: Although we can obtain similar results for any L ¼ 1; 2; . . . ; we restrict our discussion
to L ¼ 1: The reason is that the convergence proof is valid only if L ¼ 1:

Let P ¼ CT
1C150 be the terminal cost matrix, and let zi ði ¼ 1; 2Þ be a response given by xið0Þ

and uiðtÞ ¼ GxiðtÞ þ viðtÞ where viðtÞ is a pulse at t ¼ 0: If L ¼ 1; the inner product has the form,

hz1; z2iL¼1 ¼ z1ð0Þ
Tz2ð0Þ þ x1ð1Þ

TPx2ð1Þ: ð7Þ

We have the following relations (see Appendix A).

Lemma 1

Suppose that (1), (2) and the feedback relation hold. Then the sensitivity matrices defined in (5)
are given for L ¼ 1 by

Gaa ¼ ðAþ BGÞTPðAþ BGÞ þ CTC þ GTDTDG

Gab ¼ ðAþ BGÞTPBþ GTDTD

Gbb ¼ BTPBþDTD:

We transform the orthogonality to L ¼ 1 provided that P has a special value indicated below
(see Appendix B for the proof).

Theorem 1

Suppose Assumption 1. Let P50 be the ðn; nÞ matrix used in the right-hand side of (7). Then
G 2 Rm�n is the infinite-horizon LQ gain if and only if the matrices P and G satisfy

xað0ÞTPxað0Þ ¼ hza; zaiL¼1

hza; zbiL¼1 ¼ 0

for any xað0Þ 2 Rn and vbð0Þ 2 Rm:

In other words, a part of the sensitivity related to future data ðt51Þ is replaced with P:
Recalling definitions and Lemma 1, we also express the condition as P ¼ Gaa and Gab ¼ 0: This
orthogonality condition corresponds to the algebraic Riccati equation as shown later.

We see this orthogonality in the simple first-order system:

xðtþ 1Þ ¼ xðtÞ þ uðtÞ; C ¼ 1; D ¼
ffiffiffi
2

p
: ð8Þ

The above responses ðt5LÞ are

zaðtÞT ¼ ðð1þ GÞtxað0Þ;
ffiffiffi
2

p
Gð1þ GÞtxað0ÞÞ

zbðtÞT ¼
ð0;

ffiffiffi
2

p
vbð0ÞÞ ðt ¼ 0Þ

ðð1þ GÞt�1vbð0Þ;
ffiffiffi
2

p
Gð1þ GÞt�1vbð0ÞÞ ðt ¼ 1; 2; . . .Þ:

8<
:
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For a stabilizing gain such that �25G50; we have

hza; zbiL¼1 ¼ xað0Þ 2Gþ ð1þ 2G2Þ
X1
t¼0

ð1þ GÞ2tþ1

( )
vbð0Þ:

On the other hand, the condition of Theorem 1 is

P ¼ ð1þ 2G2Þ þ ð1þ GÞ2P

hza; zbiL¼1 ¼ xað0Þf2Gþ ð1þ GÞPgvbð0Þ ¼ 0

by using (7). Applying the sum of the geometric series P; we have

hza; zbiL¼1 ¼ hza; zbiL¼1 ¼ xað0Þ
ð1þ 2GÞð1� GÞ

1� ð1þ GÞ2
vbð0Þ ¼ 0

Since 1� G ¼ 0 means a divergence of ð1þ GÞ2t; the unique solution of these conditions is
1þ 2G ¼ 0; namely, G ¼ �0:5: In comparison, the algebraic Riccati equation clearly gives the
positive solution P ¼ 2 and the time-invariant LQ gain G ¼ �0:5: They give the same LQ gain.

3. RECURSIVE ALGORITHM

3.1. New algorithm

The theorem suggests that we can obtain the LQ regulator by finding the matrices P and G that
satisfy the theorem. Because of (5), we directly obtain the sensitivities to optimize the system
from response data. In this section, we explain the recursive algorithm given from these ideas.
Detailed examination will be given later. Although we restrict the discussion to the basic state
feedback, refer to Section 7 for the output feedback.

The point of the model-free design is the estimate of the sensitivity matrix. Let k ¼ 0; 1; 2; . . .
be the iteration number of changing gain. Let Tk be the kth sequential group of sampling times.
Suppose that Tk has at least nþm samples for each k (note that k is different from t). Suppose
that Pk; Hk and Gk are given at the beginning of Tk: Feed the input

uðtÞ ¼ GkxðtÞ þ vðtÞ ð9Þ

to the system on Tk; and observe the response where vðtÞ 2 Rm is a signal with sufficient richness
(a white noise is typical).

Calculate a ðnþm; nþmÞ matrix #GGk as

#GGk ¼Xk

"(X
t2Tk

X
s2Tk

xðtÞfzðtÞTzðsÞ::

þ xðtþ 1ÞTPkxðsþ 1ÞgxðsÞT
)

þ d2 #GGk0

#
Xk ð10Þ

on the basis of response data where

Xk ¼
X
t2Tk

xðtÞxðtÞT þ dI

( )�1

; xðtÞ ¼
xðtÞ

vðtÞ

 !
ð11Þ
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are used to cancel individual data. The number d50 is sufficiently small, I is the identity matrix
and #GGk0 is a matrix such that #GGbb

k0 > 0: A typical #GGk0 is the block-diagonal matrix given by Pk and
#GGbb
k�1 where

#GGk ¼
#GGaa
k

#GGab
k

#GGba
k

#GGbb
k

 !
: ð12Þ

The matrices Gkþ1; Pkþ1 and Hkþ1 are given by response data on Tk as follows. Determine the
following matrices:

Gkþ1 ¼Gk þ DGk

¼Gk � ð #GGbb
k þHkÞ

�1 #GGba
k ð13Þ

Pkþ1 ¼ #GGaa
k þ #GGab

k DGk þ DGT
k
#GGba
k þ DGT

k
#GGbb
k DGk

¼ #GGaa
k � #GGab

k ð #GGbb
k þHkÞ

�1ð #GGbb
k þ 2HkÞð #GGbb

k þHkÞ
�1 #GGba

k ð14Þ

at the end of Tk: Since the ðm;mÞ matrix Hk50 decreases the gain change DGk in (13), we can
select Hk as long as it satisfies

Hkþ1 ¼ l1kHk þ l2k #GGbb
k ð15Þ

where l1k and l2k are any numbers such that

04l1k41; 04l2k41: ð16Þ

If G0; P0 and H0 are given, repetition of the above process gives a sequence of gains G0;
G1;G2; . . . together with P0;P1; . . . and H0;H1; . . . as k ¼ 0; 1; 2; . . . on the basis of on-line
response data without information about A and B: The initial matrices need not be optimal. The
initial conditions are

P050; H050; #GGbb
00 > 0 ð17Þ

and an example of #GGbb
00 is DTD: The initial gain G0 is any ðm; nÞ matrix (typically G0 ¼ 0).

We will prove that Gk converges to the LQ optimal gain as k ! 1: Then we know
that this model-free design corresponds to the direct (implicit) method of adaptive
control.

Remark 2

The generalized minimum variance self-tuning regulator [20] is well-known, where a fixed
positive matrix P is used to calculate the performance. Roughly speaking, the matrix
is replaced with the variable Pk in the above, and we can optimize Pk together with Gk as k
increases.

Remark 3

Let Nk be the number of elements of Tk: The Nk elements need not be consecutive sampling
times. If ðAþ BGkÞ is unstable, it is necessary to reset the state repeatedly in observation of
responses. Note that (10) is composed of each data-pair at t and tþ 1: We can continue the
algorithm by excluding invalid data-pairs related to resets.
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Remark 4

The small elements of dI and d2 #GGk0 usually play no role. However, they ðd > 0Þ guarantee the
existence of Xk and ð #GGbb

k þHkÞ
�1 even if Tk does not have nþm linearly independent xðtÞ: This

is similar to the recursive least-square method. If d ¼ 0; it is necessary to continue observation
on Tk until the inverses exist or by selecting a large Nk:

3.2. Explanation using a gradient method

We often discuss adaptive schemes in terms of gradient methods. For the LQ problem, gradient
methods are studied by Kawamura [18, 19]. The recursive algorithm occurred by extending the
Riccati equation as a gradient method. The following is developments from them.

The algorithm is composed of the estimate of the sensitivity and the optimization process.
Compare (10) with (5) by referring to (7) provided that z1 ¼ z2 ¼ z: The right-hand sides of
them are similar where each fzðtÞ;xðtþ 1Þg ðt 2 TkÞ fragment of the real-time response z replaces
the unit-length response fzið0Þ; xið1Þg: Similarly, each vðtÞ fragment of v replaces the unit-length
pulse við0Þ: Effect of individual signals are removed by multiplying Xk: We use the following
ideal assumption in the theoretical analysis:

Assumption 2

Data are given by (1), (2) and (9) exactly. The sum
P

t2Tk
xðtÞxðtÞT is positive, and the small d is

negligible in (10) and (11).

Under this assumption, we understand #GGk as follows (see Appendix C):

Lemma 2

Suppose Assumption 2. Then it follows that

#GGk ¼ G: ð18Þ

In other words, #GGk is an estimate of the sensitivity matrix under such uncertain data that do
not necessarily satisfy Assumption 2.

The remaining part is related to the optimization. We decompose the optimal control problem
(multi-stage optimization problem) into recursive one-stage problems, which we usually solve
backwards from the terminal time. Relation (14) is a gradient method for each one-stage
problem under Assumption 2. Determine matrix Pkþ1 so that xakð0Þ

TPkþ1x
a
kð0Þ is the total cost

hza; zaiL¼1 provided that xakð1Þ is given by Gkþ1: Since Pkþ1 is quadratic with respect to Gkþ1; we
have the first equality of (14) by taking the gain change DGk into consideration. The second
equality follows by substituting (13). The recursive algorithm is composed of repetition of this
one-stage optimization, that is valid regardless of stability.

If Hk � 0 as a special case, (14) gives the second-order gradient method (Newton method). If
the response has no irregular behaviour, the Newton method minimizes Pkþ1: In contrast, non-
linearity of physical systems causes inconsistency with Assumption 2, that leads to a random
error of #GGbb

k in (13). Then random variation of DGk does not vanish as k ! 1: It becomes
indispensable to construct the optimal system under uncertain information on system
sensitivity. Therefore, statistical treatment is inevitable.
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Stochastic approximation is the well-known statistical processing. However, it is especially
inadequate for unstable or nearly unstable feedback. It is necessary to reduce jjDGkjj with a
suitable ratio regardless of stability of Aþ BGk: We use Hk50 to solve this problem.

Remark 5

Hjalmarsson et al. [8, 9] proposed a considerably different iterative model-free method based on
the sensitivity limL!1 dVk=dGk; that is different from #GGk: Suppose that k is sufficiently large,
Aþ BGk is stable and the change of gain is negligible. Then we derive their relevance

lim
L!1

dVk ¼ #GGab
k dGk

X1
t¼0

xaðtÞxaðtÞT
( )

:

These sensitivities have different dependence on Gk because x
aðtÞ depends on Gk: Therefore they

give quite different behaviours of convergence.

Remark 6

Introduction of Hk and conditions (15) and (16) are based on an analogy of Landau’s adaptive
scheme [21]. Roughly speaking, we use a similar idea for the LQ problem by replacing the
system equation with the Riccati-like difference equation. Namely, the proof shown in Section
4.2 and Appendix E is related to [22, 23] (the latter is an extension of the former by regarding the
coefficient of gain correction as variable). A peculiar discussion of the LQ design is caused by
the fact that the error term of Pk is not necessary non-negative.

4. CONVERGENCE ANALYSIS

4.1. Relation to the Riccati equation

It is important for the model-free design to prove the convergence of Gk at the LQ gain. Using
Lemma 2, we immediately obtain the following relation:

Theorem 2

Suppose Assumption 2. Then, the recursive algorithm (9)–(17) is equivalent to (12)–(17).

Referring to Lemmas 1 and 2, we know that the latter equations are written by the system
matrices. We analyse the convergence in terms of the matrices. Consider a special case H0 ¼ 0
and l2k � 0; namely,Hk � 0: Then, we see the following relation by rewriting Gk (see Appendix D):

Corollary 1

Suppose Assumption 2 and Hk � 0: Then, the recursive algorithm (9)–(17) is equivalent to the
Riccati difference equation and the related gain equation:

Pkþ1 ¼ ATPkAþ CTC � ATPkBðBTPkBþDTDÞ�1BTPkA ð19Þ

Gkþ1 ¼ �ðBTPkBþDTDÞ�1BTPkA: ð20Þ
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It is well known that the above equations give the infinite-horizon LQ gain as k ! 1
under Assumption 1. Therefore, the recursive algorithm leads to the LQ gain provided that
Hk � 0 [18]. Unfortunately this algorithm ðHk � 0Þ is not necessarily practical for actual
systems with non-linearity as mentioned in Sections 6.1 and 6.2. The matrix Hk is a
countermeasure.

4.2. Convergence of gain

It becomes clear that the proof of the convergence of gain without assuming Hk � 0 is quite
important. It is asserted by Corollary 1 that (12)–(17) express an extension of the well-known
Riccati difference equation and the gain equation. Since such an extension has not been
discussed, it requires new progress in analysis. In fact, the convergence efficiency of Gk is inferior
to the Riccati difference equation for ideal systems. We obtain the following result (the
derivation is proposed in Appendix E):

Theorem 3

Suppose Assumptions 1 and 2. Let Pk and Gk be given by (12)–(17). Then they converge at the
solution Pn50 of the algebraic Riccati equation and the time-invariant LQ gain Gn:

Since we assume the ideal linear system, this analysis has the same level as basic results of
direct methods of adaptive control. This relation immediately gives the following important
result for the model-free design:

Corollary 2

Suppose Assumptions 1 and 2. Let Gk be given by the recursive algorithm (9)–(17). Then, Gk

converges at Gn as k ! 1:

Remark 7

This result guarantees the convergence without assuming the matching condition, positive-
real condition etc., that are necessary for Landau’s scheme or direct methods of adaptive
control. We can apply it to MIMO systems where the numbers of inputs and outputs are
different.

Remark 8

If ðAþ BG0Þ is unstable, the matrix Pk once diverges until ðAþ BGkÞ becomes stable. After it is
stabilized, Pk rapidly decreases. If the stabilizing of ðAþ BGkÞ is not easy, Pk and therefore Hk

may become extremely large before stabilization. This often causes numerical errors. We avoid
this as follows. Specify an upper limit zmax so that zmax5trðPnÞ: Replace Pkþ1 with fzmax=
trðPkþ1ÞgPkþ1 provided that trðPkþ1Þ > zmax:

Remark 9

The convergence rate is lowest if l1k � l2k � 1: In this case, Hk increases almost linearly as
k ! 1: It is shown in Appendix E that *GGT

kHk
*GGk ! 0 where *GGk ¼ Gk � Gn: It follows that the

lowest convergence rate of jjGk � Gnjj is, at least, ð1=kÞ1=2:
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Remark 10

In order to optimize gain for stable but non-controllable modes, the state must be reset
frequently to these modes so that the state is sufficiently rich. However, this process is
unnecessary in many cases. In fact, the performance index is almost the same for sufficiently
large k even if Gk is not optimized for unexcited modes.

5. NUMERICAL CALCULATION

The recursive algorithm includes matrix inversion and products of matrices. A direct calcu-
lation of (10) requires OððnþmÞ3Þ multiplications at the end of each Tk: Instead of the
calculation, the following iterative signal processing for the single input system ðm ¼ 1Þ requires
Oððnþ 1Þ2Þ multiplications for each sampling time, and this is similar to standard adaptive
schemes.

Let CðtÞ; UðtÞ; XðtÞ and #GGðtÞ be ðl; nþmÞ; ðn; nþmÞ; ðnþm; nþmÞ and ðnþm; nþmÞ
matrices, respectively. Their initial values are

CðtkÞ ¼ 0; UðtkÞ ¼ 0; XðtkÞ ¼
1

d
I ; #GGðtkÞ ¼ #GGk0 ð21Þ

for each k: Their numerical calculation at each t 2 Tk is (see Appendix F)

Cðtþ 1Þ ¼ CðtÞ þ zðtÞxðtÞT ð22Þ

Uðtþ 1Þ ¼ UðtÞ þ Pkxðtþ 1ÞxðtÞT ð23Þ

Xðtþ 1Þ ¼ XðtÞ � fXðtÞxðtÞgfxðtÞTXðtÞxðtÞ þ 1g�1fxðtÞTXðtÞg ð24Þ

#GGðtþ 1Þ ¼ #GGðtÞ

þ Xðtþ 1ÞxðtÞ½fzðtÞTCðtÞ þ xðtþ 1ÞTUðtÞgXðtþ 1Þ

� xðtÞT #GGðtÞ� þ ½Xðtþ 1ÞfCðtÞTzðtÞ

þ UðtÞTxðtþ 1Þg � #GGðtÞxðtÞ�xðtÞTXðtþ 1Þ

þ Xðtþ 1ÞxðtÞ½zðtÞTzðtÞ þ xðtþ 1ÞTPkxðtþ 1Þ

þ xðtÞT #GGðtÞxðtÞ�xðtÞTXðtþ 1Þ: ð25Þ

We obtain the estimate #GGk as the final value

#GGk ¼ #GGðtFk þ 1Þ ð26Þ

where tFk is the final sampling time on each Tk: The total calculation is decreased at each
sampling time because they have only products of vectors with vectors or matrices.
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6. APPLICATIONS

6.1. Basic numerical simulation

For the simple example (8), the recursive algorithm gives the gain change shown in Figure 1(a)
where P0 ¼ G0 ¼ H0 ¼ 0; EðvðtÞ2Þ ¼ 1; Nk � 2 and d ¼ 0:000001: The sequence of gains
converges at the true LQ gain Gn ¼ �0:5 regardless of l1k and l2k: This result agrees with the
convergence analysis. The convergence speed is fastest when l1k � l2k � 0: Figure 1(b) shows
the change of the same gain provided that the system equation (8) has an unknown system noise

wðtÞ such that EðwðtÞÞ ¼ 0 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðwðtÞ2Þ

q
¼ 0:1: The noise is used to describe uncertain

behaviour in the corresponding physical system, and the result is different from analysis. The
effect of the noise is smaller if l1k and l2k are larger, and Gk converges only if l1k � l2k � 1 in
the figure. This result demonstrates the usefulness of Hk:

6.2. Stabilization of a physical inverted pendulum

As an application to stabilizing control, the recursive algorithm was applied to the control of a
physical inverted pendulum. The system was composed of a pendulum hinged to the outer end
of a rotary arm. A motor turns the arm horizontally around the central shaft of the arm. The
friction between the arm and the pendulum was so small that the pendulum maintained standing
only by the motion of the arm.

Let y be the angle of the pendulum and let f be the angle of the arm. The aim of this control is
to stabilize the pendulum at the vertical position ðy ¼ 0Þ on a datum point ðf ¼ 0Þ: This is a
single-input-double-output control problem that is unfit for direct methods of adaptive control.

The input was the motor voltage given by a zero-order holder, and the outputs were yðtÞ and
fðtÞ given by encoders. The input u was feedback of the state xðtÞ ¼ ðyðtÞ; yð1ÞðtÞ;fðtÞ;fð1ÞðtÞ;
uðt� DtÞÞT where uðt� DtÞ was to cope with delays in the pendulum system, and derivatives

k

00 10 20 30 40 50 60

-0.6

-0.4

-0.2

0.0

0.2

G

k

00 10 20 30 40 50 60

-0.6

-0.4

-0.2

0.0

0.2

G
k

λ1 =  λ2  = 1.0
λ1 =  λ2  = 1.0

λ1 =  λ2  = 0.7

λ1 =  λ2  = 0.0
λ1 =  λ2  = 0.7

λ1 =  λ2  = 0.0

k

(a) (b) 

Ideal system System with a system noise

Figure 1. Gain changes of simple systems. (a) Ideal system, (b) system with a system noise.
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were given by backward difference approximation. The recursive algorithm was calculated
assuming that physical parameters are unknown.

The algorithm could not obtain a stabilizing gain by the Newton method ðHk � 0Þ because
of uncertain behaviour in the physical system. The stabilization was always accomplished,
for example, under the parameters listed in Table I. The long Dt was to distinguish xðtþ DtÞ
from xðtÞ:

Figure 2(a) shows a typical experimental result of yðtÞ and fðtÞ through the optimization
process. If one of the angles reached �0:75 rad; the calculation was automatically stopped and
it was continued after a manual reset of the state (refer to Remark 3). Since the original system
was unstable ðG0 ¼ 0Þ; the pendulum repeatedly fell down at the beginning. The figure excludes
the periods used for manual resets. It illustrates that the pendulum fell down at about 0.7, 1.45
and 2:7 s: After that, the arm swung to boundaries at 4.05, 5.7, 7.0, 9.35, and 10:65 s: We see
that stabilization of the pendulum caused the stabilization of the arm. Finally, the angles never
reached �0:75 rad; and the system maintained inverted standing without a reset. A stabilizing
gain was obtained by data observed within 16 s (k ¼ 16) in total. This convergence rate was
almost the average. Vibration of the arm remained because of the input noise vðtÞ:

Table I. Parameters of algorithm.

CTC ¼ diag ð25 0 9 0 0Þ; DTD ¼ 0:04
P0 ¼ diag ð0 0 0 0 0Þ; G0 ¼ ð0 0 0 0 0Þ

H0 ¼ 0; l1k � 0:97; l2k � 0:5
Dt ¼ 50 ms; Nk � 20 ðGk changes at every 1:0 sÞ
d ¼ 10�6; vðtÞ: random numbers less than �1 V
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Figure 2. Learning control of a physical pendulum system. (a) Change of the state, (b) change of the gain.
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Figure 2(b) shows the corresponding change in the feedback gain. The subscribed letters on G
express the gain elements. By the way, the Riccati equation of the continuous-time model gave the
LQ gain ðþ21:5þ 2:68� 3:35� 2:09Þ in the model-based design. Similarly, the equation of the
discrete-time model gave ðþ26:3þ 3:29� 5:23� 2:64Þ: The inverted standing could not maintained
for these gains. It was mainly caused by neglecting friction of the motor and the gear in the model.

6.3. Steady state error-less control of a physical servo

The classical integral-type optimal servo [24, 25] was examined for data-based design because of
the simple structure. The device was a physical plant comprises three rotary disks combined with
a flexible shaft as shown in Figure 3. It is usually a sixth order system, whose state variables are
angles yiðtÞ ði ¼ 1; 2; 3Þ and the angular velocities. The input was the current of a motor attached
to disk 1 and the output was the angle of disk 3. Figure 4 describes the pulse response y3 at t ¼ 0
of the open-loop system. It took about 30 s to come to a standstill.

Let eðtÞ ¼ CcxðtÞ � r ¼ y3ðtÞ � r be the error of the servo system where r was a constant target
value. The integral-type optimal control is as follows. We transform the state space model as

d

dt

xð1ÞðtÞ

eðtÞ

 !
¼

Ac 0

Cc 0

 !
xð1ÞðtÞ

eðtÞ

 !
þ

Bc

0

 !
uð1ÞðtÞ ð27Þ

with the performance index

V1 ¼
X1
t¼0

eðtÞ2 þ Ruð1ÞðtÞ2

by differentiating the plant equation dxðtÞ=dt ¼ AcxðtÞ þ BcuðtÞ where xð1ÞðtÞ and uð1ÞðtÞ are the
derivatives. We can expect the steady state error-less operation (eðtÞ ¼ CcxðtÞ � r ! 0 under a
constant r) because the signals were derivatives in the LQ design. The usual input uðtÞ for
optimization was given by integrating the above state feedback uð1ÞðtÞ with vðtÞ as uðtÞ ¼
Gk1xðtÞ þ Gk2e

ð�1ÞðtÞ þ vð�1ÞðtÞ:

 

disk1 disk 2 disk 3

Θ 1 Θ 2 Θ 3

Figure 3. Experimental device. Y ¼ y3 (rad).

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2004; 18:551–570

MODEL-FREE CONTROL DESIGN 563



The recursive algorithm used the provisional signals in (27) under the assumption that system
parameters were unknown where R was fixed individually. Three encoders gave sampled data of
the angles, and derivatives were given by backward difference approximation. The additional
signal vðtÞ was a difference of a random signal in order that vð�1ÞðtÞ may not become too large.
The target signal r was a rectangular wave, and data pairs for which r changed the value between
t and tþ 1 were excluded from the calculation. Other parameters of the algorithm were basically
the same as Table I. Since G0 and P0 were 0 for each optimization, Gk sometimes made the
system unstable, and a reset of the state was required. Thus we really obtained the optimal
control over a wide range of R:

Figure 5 illustrates experimental results of the optimized responses y3ðtÞ as a function of the
weight R: The signal vðtÞ was removed in the responses for simple understanding. The dotted
lines are the rectangular target rðtÞ ¼ �1 with the period 20 s: It seems that these responses
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Figure 4. Impulse response of the open-loop system. Y ¼ y3 (rad).
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fulfilled the steady state position error-less operation if r is constant permanently. Approaching
level of (a) is low because of the large R: Conversely, the response in (c) is rapid but it contains
the high frequency overshoot. By comparing them, we see that (b) R ¼ 4 is a good value.

7. CONCLUSION

The theoretical analysis and experimental results show that the proposed model-free approach is
simple and promising for practical controller design. The convergence analysis guarantees that
the stabilizability and detectability are sufficient even for unstable multi-input-multi-output
systems. It is desired that these results contribute to development of learning or adaptive LQ
control design. Although the study is restricted to the basic problem, various alteration may be
possible. Some modification is effective to obtain a suitable sampling period for many practical
applications.

Extension of these results to output feedback is quite interesting because the standard
observer is difficult to construct for unknown systems. Since it has been shown that we can
transform the output feedback control problem of an unknown nth-order system into a known
2nth-order state feedback problem [2] (English), the recursive algorithm seems applicable to the
output feedback control of unknown systems as well.

The theoretical derivation is mainly given for ideal linear systems. It is a future study to
compare this approach with the standard LQ design as to non-linearity, etc.
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Appendix A: Proof of Lemma 1

Refer to (11). We rewrite (1), (2) and uðtÞ ¼ GxðtÞ þ vðtÞ as

xðtþ 1Þ ¼ ðAþ BGBÞxðtÞ ðA1Þ

zðtÞ ¼
C 0

DG D

 !
xðtÞ: ðA2Þ

Substitute these relations, t ¼ 0; vað0Þ ¼ 0 for za and xbð0Þ ¼ 0 for zb into (7). Refer to (C1)
because the right-hand sides are the same except xð0ÞT and xð0Þ: Then we obtain the relations of
the lemma as respective elements of the matrix because the relation holds for any xað0Þ and
vbð0Þ: &

Appendix B: Proof of Theorem 1

Though (6) implies Theorem 1, we prove it from the algebraic Riccati equation. Under
Assumption 1, it is well known that there exists the LQ optimal control with the gain G if and
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only if P50 satisfies the algebraic Riccati equation and the gain equation. They are obtained by
replacing Pkþ1 and Pk with P and Gk with G; respectively, in (19) and (20). Since we use the
latter to rewrite the last term of the former as ATPBGþ GTBTPAþ GTðBTPBþDTDÞG; we
rewrite the former as

P ¼ ðAþ BGÞTPðAþ BGÞ þ CTC þ GTDTDG: ðB1Þ

Multiply both sides by xað0ÞT from the left and by xað0Þ from the right. Substitute
ðAþ BGÞxað0Þ ¼ xað1Þ and ðCT GTDTÞTxað0Þ ¼ zað0Þ; and refer to (7). Then, the multiplied
(B1) agrees with the first equality of the theorem.

Multiply both sides of the gain equation by ðBTPBþDTDÞ; and transpose the right-hand side
to the left. Then we can rewrite it as

BTPðAþ BGÞ þDTDG ¼ 0: ðB2Þ

Multiply this equation by vbð0ÞT from the left-hand side and by xað0Þ from the right-hand side.
Refer to the definition of zbðtÞ: Then, the multiplied (B2) agrees with the second equality of the
theorem.

In other words, the equalities of Theorem 1 are equivalent to the algebraic Riccati equation
and the gain equation. &

Appendix C: Proof of Lemma 2

Assumption 2 implies Lemma 1. Using Lemma 1, we see that

G ¼
ðAþ BGkÞ

T

BT

 !
PkðAþ BGk BÞ

þ
CT GT

kD
T

0 DT

 !
C 0

DGk D

 !
: ðC1Þ

Multiply both sides by xðtÞxðtÞT from the left and by xðsÞxðsÞT from the right. Substitute (A1) and
(A2). Then we have

xðtÞxðtÞTGxðsÞxðsÞT ¼ xðtÞfzðtÞTzðsÞ

þ xðtþ 1ÞTPkxðsþ 1ÞgxðsÞT: ðC2Þ

Add both sides with respect to t and s: Then Xk offsets the sum of xxT in the left-hand side.
We obtain the lemma because the left-hand side agrees with #GGk by neglecting the small terms
with d: &

Appendix D: Proof of Corollary 1

Let Hk � 0: Note the relation #GGab
k ¼ ATPkBþ GT

k
#GGbb
k : Take

Gkþ1 ¼ Gk � ð #GGbb
k Þ�1ðBTPkAþ #GGbb

k GkÞ ðD1Þ

Pkþ1 ¼ #GGaa
k � ðATPkBþ GT

k
#GGbb
k Þð #GGbb

k Þ�1ðBTPkAþ #GGbb
k GkÞ ðD2Þ
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from the second equalities of (13) and (14). Referring to Lemma 1, we can cancel all Gk by some
terms in #GGaa

k ; etc. We thus obtain the equations of the corollary. &

Appendix E: Proof of Theorem 3

The basic idea of the following is in common with [22, 23] as mentioned in Remark 6 by
replacing the system equation with the Riccati-like equation.

We rewrite (13) and (14) in terms of Gkþ1 as follows. Since Assumption 2 implies (C1),
substitute (C1) and Gk ¼ Gkþ1 � DGk into the first equalities of them. Multiply both sides of the
latter by ðBTPkBþDTDþHkÞ: Then we can cancel all DGk except HkDGk of the latter, and we
obtain,

Pkþ1 ¼ ðAþ BGkþ1Þ
TPkðAþ BGkþ1Þ

þ CTC þ GT
kþ1D

TDGkþ1 ðE1Þ

HkDGk ¼ �fBTPkðAþ BGkþ1Þ þDTDGkþ1g: ðE2Þ

Now, define the error terms *PPk ¼ Pk � Pn and *GGk ¼ Gk � Gn: Since (B1) and (B2) are
equivalent to the algebraic Riccati equation, we can rewrite P as Pn and G as Gn in them.
Consider the difference between (E1) and the rewritten (B1) and the difference between (E2) and
rewritten (B2). Let An ¼ Aþ BGn: Substitute Aþ BGkþ1 ¼ An þ B *GGkþ1 into the differences. We
thus obtain the error equation

*PPkþ1 ¼AnT *PPkA
n þ gk *GGkþ1 þ *GGT

kþ1g
T
k þ *GGT

kþ1hk
*GGkþ1

¼ ðAn þ B *GGkþ1Þ
T *PPkðAn þ B *GGkþ1Þ

þ *GGT
kþ1h

n *GGkþ1 ðE3Þ

HkDGk ¼ �gTk � hk *GGkþ1 ðE4Þ

where

gk ¼ AnTPkBþ GnDTD ¼ A*T *PPkB

hk ¼ BTPkBþDTD ¼ BT *PPkBþ hn;

hn ¼ BTPnBþDTD:

We prove the convergence by using a Lyapunov function. Since ðAnÞT is a stable matrix under
Assumption 1, there exist two regular matrices M and N such that the matrix Lyapunov
equation

AnMMTAnT �MMT ¼ �NNT ðE5Þ

holds. Define

Jk ¼ trfMTð *PPk þ *GGT
kHk

*GGkÞMg: ðE6Þ
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We know that Jk is non-negative. Then change of Jk is given by

Jkþ1 � Jk ¼ trfMTð *PPkþ1 � *PPk

þ DGT
kHk

*GGkþ1 þ *GGT
kþ1HkDGk

þ *GGT
kþ1ðHkþ1 �HkÞ *GGkþ1 � DGT

kHkDGkÞMg ðE7Þ

by substituting *GGk ¼ *GGkþ1 � DGk: Substitute (E3) and (E4) into (E7) except the last term. We
can cancel non-symmetric terms gk *GGkþ1 and *GGT

kþ1g
T
k as

Jkþ1 � Jk ¼ trfMTðAnT *PPkA
n � *PPkÞMg

� trfMTð *GGT
kþ1ðhk �Hkþ1 þHkÞ *GGkþ1

þ DGT
kHkDGkÞMg: ðE8Þ

Since (15) and (16) mean hk �Hkþ1 þHk50; it follows that

Jkþ1 � Jk4trfMTðAnT *PPkA
n � *PPkÞMg: ðE9Þ

Using the commutativity of matrices in the trace, we can rewrite the right-hand side as
trfðAnMMTAnT �MMTÞ *PPkg: Then (E5) implies

Jkþ1 � Jk4� trðNT *PPkNÞ: ðE10Þ

At this point, we first prove the theorem under the assumption that P05Pn; that is *PP050:
Then, the second equality of (E3) guarantees that *PPk50 for any k ¼ 0; 1; 2; . . . : Therefore, (E10)
shows that Jk is monotone non-increasing. In addition, Jk is non-negative. As is known
according to Weierstrass’s theorem, the bounded monotone sequence Jk converges at a certain
value. Then, Jkþ1 � Jk ! 0 and *PPk ! 0 because N is regular. This convergence implies that
*GGT
kþ1h

n *GGkþ1 ! 0 in (E3). From the observability of Assumption 1, we can conclude that *GGk ! 0;
namely Gk ! Gn:

Next is the study of the convergence without the assumption that P05Pn: Necessity of this
case distinguishes this problem from the usual adaptive control. Let P#

k be the solution of the
standard Riccati difference equation with the initial condition P#

0 ¼ 0: Let *PP#
k ¼ P#

k � Pn: Let

zk ¼ �
X1
i¼k

trðNT *PP#
i NÞ: ðE11Þ

Let lni denote each eigenvalue of An: Since the standard solution P#
k converges at Pn

exponentially with Oðmaxi jl
n

i j
kÞ [26], the infinite series in (E11) has the sum.

Since Jk is not a Lyapunov function yet, we use

%JJk ¼ Jk þ zk ðE12Þ

instead of Jk: Then, zkþ1 � zk ¼ trðNT *PP#
kNÞ: By substituting these relations and (E10), it follows

that

%JJkþ1 � %JJk4� trfNTð *PPk � *PP#
k ÞNg: ðE13Þ

From the definition, *PP#
k is the minimum of *PPk for any possible control and for any P050:

Therefore, *PPk � *PP#
k50: Since %JJk is bounded below, (E13) plays the same role as (E10).

Consequently, %JJk converges, %JJkþ1 � %JJk ! 0 and *PPk � *PP#
k ! 0: Then, *PPk ! 0 because *PP#

k ! 0:
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The rest of this proof is the same as the case Pk5Pn: Finally, we can conclude that *GGk ! 0
without the assumption that P05Pn: &

Appendix F: Calculation of #GGk

Let t 2 Tk: Define parameters at each t as

CðtÞ ¼
X

t4t�1\t2Tk

zðtÞxðtÞT ðF1Þ

UðtÞ ¼
X

t4t�1\t2Tk

Pkxðtþ 1ÞxðtÞT ðF2Þ

XðtÞ ¼
X

t4t�1\t2Tk

xðtÞxðtÞT þ dI

( )�1

ðF3Þ

YðtÞ ¼
X

t4t�1\t2Tk

X
s4t�1\s2Tk

xðtÞfzðtÞTzðsÞ

(

þ xðtþ 1ÞTPkxðsþ 1ÞgxðsÞT
�
þ d2 #GGk0; ðF4Þ

#GGðtÞ ¼ XðtÞYðtÞXðtÞ: ðF5Þ

Note that YðtÞ ¼ XðtÞ�1 #GGðtÞXðtÞ�1 and XðtÞ�1 ¼ Xðtþ 1Þ�1 � xðtÞxðtÞT: Thus, we have

Yðtþ 1Þ ¼ YðtÞ þ DYðtÞ ðF6Þ

where

YðtÞ ¼Xðtþ 1Þ�1 #GGðtÞXðtþ 1Þ�1

� xðtÞxðtÞT #GGðtÞXðtþ 1Þ�1 � Xðtþ 1Þ�1 #GGðtÞxðtÞxðtÞT

þ xðtÞxðtÞT #GGðtÞxðtÞxðtÞT ðF7Þ

DYðtÞ ¼ xðtÞfzðtÞTCðtÞ þ xðtþ 1ÞTUðtÞg

þ fCðtÞTzðtÞ þ UðtÞTxðtþ 1ÞgxðtÞT

þ xðtÞfzðtÞTzðtÞ þ xðtþ 1ÞTPkxðtþ 1ÞgxðtÞT: ðF8Þ

Their definitions give (21), (22), (23) and (26). The matrix inversion lemma [27] gives (24).
Multiply (F6) by Xðtþ 1Þ from both sides and substitute (F7) and(F8). Considering the relation
between YðtÞ and #GGðtÞ , we have (25) and (26). &.
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